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Weakly nonlinear theory and finite-difference calculations are used to describe steady- 
state and oscillatory convective heat transport in water-saturated porous media. 
Two-dimensional rolls in a rectangular region are considered when the imposed 
temperature difference between the horizontal boundaries is as large as 200K, 
corresponding to a viscosity ratio of about 6-5. The lowest-order weakly nonlinear 
results indicate that the variation of the Nusselt number with the ratio of the actual 
Rayleigh number to the corresponding critical value R/R,,  is independent of the 
temperature difference for the range considered. Results for the Nusselt number 
obtained from finite-difference solutions contain a weak dependence on temperature 
difference which increases with the magnitude of R/R,.  When R/Rc = 8 the constant- 
viscosity convection pattern is steady, while those with temperature differences of 
100 and 200 K are found to oscillate. 

1. Introduction 
Booker (1976) has reported on measurements of convective heat transfer in a high- 

Prandtl-number, temperature-dependent-viscosity fluid, polybutene no. 8, confined 
between horizontal plates. He found that the Nusselt number N declined with an 
increase in the ratio of the viscosities at the fop and bottom boundaries when the 
viscous-liquid Rayleigh number R, (defined in (32)), based on the mean value of the 
viscosity, is fixed. Subsequently, Booker & Stengel (1978) showed that the decrease 
could be attributed to an increase in the critical Rayleigh number R,, with increasing 
viscosity ratio. In  particular they found that, for R,/R,, 2 10 and viscosity ratios up 
to 300, the heat-transfer results coixld be correlated by N = 1.49(R,/R,,)0281. A 
universal curve describes the Nusselt-number variation for the specified range of 
Rayleigh number and impressed temperature difference. 

In  this paper we report on a related analogous result, for water-saturated porous 

t Present address: Mathematics Department, Colorado School of Mines, Golden, Colorado 
80401, U.S.A. 
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media with large temperature variations, derived from analytical and numerical 
solution development. We consider two-dimensional convection rolls in a rectangle 
when the temperature difference between the isothermal horizontal surfaces is as 
large as 200K. This maximum viscosity ratio (top to bottom), about 6.6, implies 
relatively large viscosity variations for this water-based system.t The geometrical 
configuration mimics the apparatus used by Caltagirone, Clopeau & Combarnous (1971) 
to observe steady and oscillatory two-dimensional rolls at supercritical Rayleigh 
numbers. These experiments, carried out in a saturated porous medium 38 cm long, 
2 cm wide and between 4 and 6 cmin height, show that a thin vertical slab configuration 
will suppress three-dimensional modes, even at  relatively high Rayleigh numbers. 
Straus & Schubert (1978) have used stability theory to show that a steady two- 
dimensional roll in a sufficiently narrow rectangular parallelepiped cannot be de- 
stabilized in the third dimension. 

An analytical solution, based on weakly nonlinear theory (Palm, Weber & Kvern- 
vold 1972) is developed for the variable-viscosity problem. A related formulation is 
described by Joseph (1976), although no specific results are given. In  our theory the 
porous medium Rayleigh number R is based on the kinematic-viscosity value at  the 
upper cold boundary. Linear stability theory based on that Rayleigh-number definition 
(Kassoy & Zebib 1975) shows that the critical value decreases with increasing viscosity 
ratio (temperature difference) across the system. A two-term expansion for N, when 
R is close to Re, is derived for temperature differences up to 200K. It is observed 
that N is essentially invariant for constant RIR, values over the temperature range 
considered. 

Solutions a t  larger values of RIR, are obtained by numerical methods (Garg 
& Kassoy 198 1) developed originally for computation of high-Rayleigh-number, 
constant-viscosity convection in saturpted porous media. It is observed that the 
steady-state Nusselt number at a given value of B/Rc is nearly but not quite 
invariant to the temperature difference. We find that the difference between the steady 
Nusselt-number value for the case of constant viscosity (nearly vanimhing temperature 
difference) and that for a 200 K difference is at most about 7 % for the range of RIRC 
considered. Although- the general effect of temperature difference on steady-state 
convection is weak, it appears to have a more significant effect on the onset of oscilla- 
tions in the system. When RIR, = 8, constant-viscosity convection is shown to be 
steady. In contra&, a regular oscillatory mode exists for AT* = 100 and 200 K. 

2. Mathematical system 
The geometrical configuration consists of a rectangle of height L* and width W*. 

The horizontal boundaries at z* = 0 and z* = - L* are kept at constant temperatures 
T,* and T,* respectively, and are assumed impermeable. The vertical boundaries are 
assumed to be impermeable and thermally insulated. The non-dimensional equations 
of natural convection can be written in the form 

pV2\r+pxY,+psYs+8, = 0, 

R(f3~+Yx+8xYs-8sYx)-V28 = 0.  

t Significantly larger variations are found in various oil-based systems and in the hypothetical 
models of mantle convection. 
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The Boussinesq approximation has been invoked, and the liquid specific heat and 
the medium thermal conductivity are assumed constant. The boundary conditions are 

(3) 

The variables in (1)-(3) have been defined with respect to dimensional (starred) 
quantities by 

1 e(x, 0, t )  = e(x, - 1, t )  = Y ( Z ,  0, t )  = Y ( ~ ,  - 1, t )  = 0, 

0,(O, X ,  t )  = 0,(A, Z ,  t )  = Y(0, Z ,  t )  = "(A, Z ,  t )  = 0. 

*k*a*AT* 
Y = 'r*/q?L*, q? = 

vo* 7 

T = (T,*-Tg)/T,*, 78 = T - ( l - r z ) ,  T = T*/T,*, 
x = x*/L*, /I = p*/&, A = W*/L*, 

t = t*/t:, t,* = (p*C*), L*/q?(p*C*),, 
g*k*a*AT*L* C:p: 

R =  
V p  GI * 

Here, g* is the gravity constant, k* is the permeability, a* is the thermal-expansion 
coefficient, AT* = Tr - T,*, v t  is the kinematic viscosity evaluated at  T,*, is the 
viscosity at T,*, A; is the medium thermal conductivity, C' is the liquid specific heat, 
and C z  is the medium specific heat. The quantity 1 - T X  represents the rest-state 
temperature distribution. It should be noted that the porous-medium Rayleigh 
number R, based on the cold-boundary kinematic viscosity, is to be considered as a 
' bookkeeping' value rather than as locally representative. The variation in viscosity 
across the system implies that the local value of the Rayleigh number near the hot 
bottom is significantly larger than that near the upper surface. This effect causes the 
critical value of R for onset of convection to decrease strongly as AT* is increased 
(Kassoy & Zebib 1975). 

The viscosity dependence on temperature of water is described accurately by the 
empirical curve used by Wooding (1957). In the present notation and with T,* = 298 K, 
we can write 

[l + a,AT*(z - 0)  -u,AT*~(x-  1 9 ) ~ ] ,  
38 

') = 38 - AT*(z - 0 )  (4) 

where a, = 3.17 x u2 = 2.56 x 10" and AT* is a pure number. This formula, 
valid to AT* N 200 K, is used in order to model convection phenomena in liquid 
water specifically. In  this sense the results are of interest in the context of geothermal 
processes in the Earth's crust (Garg & Kassoy 1981). 

In the derivation of the mathematical model in (1) and (2) it is assumed that the 
thermal-expansion coefficient a* is a constant. In fact for systems with AT* = 200 K 
and T,* = 298 K, a* varies by a factor of nearly 5.5. Straus & Schubert (1977) have 
included this effect in their definitive study of the linear stability properties of related 
systems. It should be recognized that the a* effect on the density is of the magnitude 
of 10 yo. There is then a concomitant effect on the natural convection-driving mecha- 
nism. In contrast, the magnitude of the velocity components is inversely proportional 
to the viacosity for a porous-medium system. It follows that viscosity variations of the 
magnitude considered here will have a more profound effect on the convective motion 
than will the variable thermal expansion coefficient. A quantitative estimate of thew 
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effects on linear stability is given by Morland, Zebib & Kassoy (1977). While one may 
expect similar effects to prevail in the nonlinear regime, a definitive statement requires 
a more complete model than that used here. 

Finally one should note that liquid water has a modest Prandtl number of about 6 
at 298 K. At 400 K the value is about 1-4. Further increase in the temperature causes 
an additional decrease to the neighbourhoodof unity (Edwards, Denney & Mills 1979). 

3. Finite-amplitude analysis 

the viscosity function (4) can be expanded as a Taylor series 
In  weakly nonlinear theory, where the amplitudes of Y and 8 are finite but small, 

Here 

fi(4 = a8' (i = 0, 1,2, ...). 
L o  

Then in standard fashion (1)  and (2) can be arranged in the form 

La= N, 

+=[TI, L =  

where primes denote differentiation with respect to z, and AR = R - Rc. 
The solution to (3), (6) and (7) is assumed to have the form 

@ = E ( t )  @,(x, z )  + &,(x, 2, t ) .  (8) 

Here s( t )  is a small amplitude to be found. +,(z, z), the linear stability analysis neutral 
mode, satisfies La, = 0. It is given by 

?l 
(9) 

Equation (1 1) is the linear stability eigenvalue problem considered by Kassoy & Zebib 
(1975). The correction 6, is described by 
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where 
d, = @[aylY1el- &(flelY;)’] sin 2 m  

-~sS[(f&Y;)’+ 3~efiY,e?] (sinm+sin3aX), 

+ ~ ~ z R c a ( ~ l Y ; - ~ l e ; )  cos 2 ~ ,  
a, = [ E R , e , + s a ( ~ R ) ~ , 1 c o s ~ - ~ s ~ ~ ~ a ( e ~ ~ ~ + ~ ~ e ~ )  

with 6 = ds/dt. The compatibility condition required for (3) and (12) is found by first 
defining the adjoint operator L* by 

where 
(LU,V) = (U, L*V), 

(LU,V) = S”dzJ0 (LU).VdZ, 
0 -1 

and U and V are two vector functions with four continuous derivatives on 0 
and - 1 6 z 

x 4 A 
0, and satisfying the boundary conditions (3). We find that 

The solution to 
L**p: = 0 

and 13) is found to be 

The compatibility condition 

can be used in (12) to show that 
(L&,,*?) = 0 

B = 0(63),  . AR = 0 ( € 2 ) ,  (16) 
which means that several contributions to d, and d, below (12) are superfluous to the 
order considered. These terms must be carried over to the next-higher-order pertur- 
bation equations. It follows that 

where 

The term O,(z) represents modifications to the basic rest-state due to  nonlinear inter- 
actions. The stream-function component is zero since there is no net mass flow across 
the boundaries, while the temperature-perturbation component eo(z) signifies a change 
(increase) in the net heat transfer across the horizontal boundaries. The functions 
eo(z), Y&) and e,(x) are found by solving the following ordinary differential equations: 
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Q, = €@I + “(9, + e2) + a 2 ( x ,  2, t )  
in ( 6 ) .  This leads to 

&c3[ - (f20:Y3 + 3a2fiY1e:] (sin ax+ sin 3ax) 

- c3[ (fl OoY;)’ sin ax + t(fl 02Yy (sin 3m - sin m) 
+ &(flelY;)f (sinm+sin 3ax)l 

+ a2@fl[BoYlsinax+ 3(8,Yl+ 2 Y 2 0 1 )  (sinax+ 3sin3ax)l  

[ER, O1 + ae(AR) Yl]  cos m 

.I 

-aRcs3[8;Y1~osax+~(282Yl+81Y;) ( C O S ~ X - C O S ~ C U )  

+ 4 ( 2 0 ; ~ ,  + e;yl) (cos= + cos 3ax)l - 

- 
L@, = - (22 )  

+ R c i S o  -1 O:dz+ae(AR) / ’  -1 B I Y l d z  = O(s5). (23 )  

Equation (23 )  determines the unknown amplitude s ( t )  to O(e5). A steady state is 
possible if there is a real solution to (23 )  as t +- 03 (or E --f 0). 

From (23 ) ,  the steady-state amplitude co is given by 

ei = -a(AR)/ ’  -1 YIOldz /I l+O(t$) ,  (24 )  

where Il is the value of the first integral in (23 ) .  The Nusselt number is described by 

N =  I - A I  A - 1  ae dx  ( z o = - 1 , 0 )  

A 0 ax so 

(25 )  

The derivative in (25 )  can be obtained from the solution to (19) :  

O,(z) = & R c a ( z J o  -1 B l Y l d 2 + ~ z o B l Y l d 2 ) ,  

8 ,Y1d2  = -- so (612+a20:)d2. 

(26 )  

where it should be noted that by using (10) the first integral can be written as 

(27 )  aRc -I  

It follows that at  the upper surface 



Convected heat transport in saturated porous media 239 

AT* ("C) 7 Rc k-2 
- t o  - t o  4n4 0 
20 0.067 31.5 0.0043 
40 0.134 26.3 0-0020 
100 0.338 17.3 0~0005 
120 0,402 15.7 0~0009 
200 0.671 11.1 0-0093 

TABLE 1. The computed value of the proportionalit,y constant k as 
a function of overheat ratio 7 

The Nusselt number a t  the upper surface, obtained by combining (24), (25), (27) and 
(28), can be written as 

where Il is the first integral in (23). 
I n  order to evaluate (29) one first selects a value of the aspect ratio A and the over- 

heat ratio T.  Then the eigenvalue problem in (11) is solved by a quasilinearization 
technique, described in Kassoy & Zebib (1975), to obtain R, and 6,. Equation (10) 
is used to find Y,. The integral I, depends on the functions eo, 8, and Y2. The first is 
obtained from the quadrature form in (26). The latter two quantities are found by an 
integration of (20). 

Calculations were carried out for a square, A = 1 (a = 7r) and the values of T shown 
in table 1. It is observed that the proportionality constant k is essentially invariant 
over the range of 7 considered. The value at T = 0, k = 2, obtained by purely analytical 
methpds,.corresponds to the lowest-order result obtained by Palm et al. (1972). The 
source of the invariance is not o b ~ o u s .  For example, the numerator in the k-definition 
in (29) dependsimplicitly on fo(z), defined below (5) ,  while I, has an explicit dependence 
on f,(z) and f 2 ( z ) .  As a result it is not possible by algebraic manipulation to reduce I, 
to a quantity proportional to the numerator. The viscosity formula in (a), from which 
fo, f, and f2 are obtained, is empirical in nature and exhibits no obvious special qualities 
that point toward the invariance property. 

The result given by (29) is of course valid only for small values of ARIR,. In  prin- 
ciple, additional accuracy could be obtained by higher-order calculations and methods 
like those used by Palm et al. (1972). However, given the availability of highly accurate 
numerical methods like those used in a previous study of constant-viscosity convection 
(Gary t Kassoy 1981), it seems more useful to proceed to larger values of R / R ,  via 
numerical solutions. 

4. The numerical method 

Kassoy (1981) and Gary (1981). The system in (1) and (2) is used in the form 
The numerical method used to obtain the Nusselt number is described in Gary & 
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N 

RIRC AT* = 0 AT* = 100K AT* = 2 0 0 K  

2 2.2555 2.1691 2.1670 
3 2-9355 2.836 2.7761 
4 3.4902 3.2875 3.2037 
6 4.1191 3.9478 3.8375 
8 4.6499 oscillatory oscillat.or y 

TABLE 2. Average Nusselt number N versus R/Rc for several AT* (K) 
obtained from a second-order method on a 33 x 33 grid 

The viscosity p is temperature-dependent. In the computations described in Gary & 
Kassoy (1981) we assumed a constant viscosity. The only change required for the 
present work is the use of a more general method to solve the elliptic equation for the 
stream function Y(x, z, t ) .  We had used a direct method, based on a subroutine package 
by Swarztrauber & Sweet (1975), which does not apply to the variable-viscosity 
problem. In this work we use the multigrid iterative method to solve the equation for 
the stream function (Brandt 1977). In  most of our runs we used the ‘cycling’ version 
of the multigrid algorithm rather than the ‘FAS’ version. The multigrid method is 
based on a series of mesh refinements, each with one-half the resolution of the previous 
mesh. Our cycling version proceeds from the fine mesh down to the lowest-level mesh 
and back to the fine mesh. Gauss-Seidel ‘smoothing ’ iterations are used on each mesh 
to reduce the ‘high-wavenumber’ error on that mesh. We refer to Brandt (1977) for 
a complete description. This method worked very well for the steady-state solutions 
that are of concern here. For time-dependent solutions the FAS version would be more 
efficient. This version starts on the coarse mesh and works up to the fine mesh. 

We used the fourth-order AD1 (alternating-direction-implicit) method to solve the 
time-dependent &equation. This is described in our previous paper. Generally a time 
step of At = 1.0 (in dimensionless units) was used, since we were looking for a steady- 
state solution. We reduced the time step to 0.05 or 0.1 for a few cases to verify that 
the solution is independent of the time step. 

The basic five-point difference approximation used to solve for the stream function 
provides second-order accuracy. An option in our code allows us to obtain a fourth- 
order accurate solution based on the iterative-improvement idea of Lindberg ( 1976). 
This approximately doubles the computing time for the stream function. It requires 
the computation of a correction term based on fourth-order five-point difference 
approximations in each co-ordinate direction followed by a second solution of the 
usual five-point difference approximation using the multigrid subroutine. This will 
be described in more detail in a forthcoming paper. 

The second-order scheme on a 33 x 33 mesh provides adequate resolution for the 
steady-state solutions. We have made sufficient runs with second- and fourth-order 
schemes using 33 x 33 and 49 x 49 meshes respectively to ensure the existence of 
oscillatory solutions at the higher Rayleigh numbers. However, further investigation 
is required to estimate the precise error in the oscillatory solutions. Detailed considera- 
tion of these matters is given in Gary & Kassoy (1981). 
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N 
A 

I \ 

R/Ro AT* = 0 AT* = 100K AT* = 200K 
4 no calculation made 3.2818 3.2021 
6 4.1012 3.9348 3.8361 

TABLE 3. Average N w l t  number N versus R/R, for several AT* (K) 
obtained from a fourth-order method on a 49 x 49 grid 

5 

4 

N 3  

2 

1 
1 I I 1 I I 
2 3 4 5 6 7 8 

RIRc 

FIUURE the 
temperature difference AT*. The dashed line, obtained from (29), ie the weakly nonlinear 
result. 

The Nuaselt-number dependence on the Rayleigh-number ratio for values o 

5. The numerical results 
Specific numerical results were obtained for values of AT* equal to 0,100 and 200 K 

for a square with an upper surface temperature at 298 K. In table 2 we show the value 
of the Nusselt number N, calculated as an integral average of the values found on each 
horizontal row of grid points including the upper and lower boundaries, for values 
of R/Rc ranging from 2 to 8. These results were obtained from the second-order 
scheme on a 33 x 33 mesh. At  R/Rc = 2 the value of N changes from 2-2555 for the 
constant-viscosity case (AT* = 0) to 2.1670 when AT* = 200 K, amounting to a 
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N 4.5 

94 95 96 97 98 
t 

FIQURE 2. The integral average Nuseelt number aa a function of time for 
RIR, = 8 and AT = 200 K. 

3.92 yo decrease. At R/Rc = 6 the analogous variation is 6-83 %. In order to determine 
whether these small, but systematic, variations in N with AT* were real, we obtained 
solutions from a fourth-order scheme on a 49 x 49 mesh. The results for RIR, = 4 
and 6 are shown in table 3. A comparison of the appropriate entries in tables 2 and 3 
shows that the variation associated with accuracy level and resolution is a t  most 
0.43 yo. This change is an order of magnitude smaller than that associated with the 
AT* effect. It seems reasonable to conclude that the Nusselt number is weakly de- 
pendent on the value of the temperature difference. The dependence increases with 
RIR,. Steady-state results, including the weakly nonlinear analytical prediction, are 
shown in figure 1. 

At a fixed value of R/Rc the Nusselt number is observed to decrease slightly as 
AT* increases. It should be noted that the absolute value of R decrertses significantly 
with the increaae in AT*, owing to the associated rapid decline of R, seen in table 1 
(Kaasoy & Zebib 1975). In  this sense R itself is not a good correlation parameter. It 
is the use of R/R, ,  which evidently compensates for most of the viscosity effects on 
stability, that leads to a near invariance of N to AT*. 

At RIR, = 8 we found a steady-state solution for the constant-viscosity case, 
AT* = 0, with N = 4.6499. In  contrast, the second-order scheme with 33 x 33 reso- 
lution produced oscillatory solutions at the larger values of AT*. In order to be certain 
that the unsteadiness was not a numerical fiction, additional computations were 
carried out using the more accurate fourth-order scheme. We verified the steady 
result for AT* = 0 and found nearly identical oscillatory results at the larger overheat 
values. We conclude that the onset of the oscillatory mode is associated with both the 
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FIQWRE 3. Contours of O,,-O,, at each grid point obtained from a searoh over 6 time units 
for R/Rc = 8 and AT = 200 K. The contour interval is 0.01 after the 0-04 contour. 

FI~URE 4. Contours of (Y~r-Ym,,,) x 1 0 4  at eaoh grid point obtained from a search over 6 
time units for R/Rc = 8 and AT = 200 K. The contour interval is 20 after the 80 contour. 
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FIQURE 5. Instantaneous isotherms for (T - 1 ) / ~  at t = 98 when R/R,  = 8 and AT = 200 K. 
The dashed line is the maximum-disturbance contour from figure 3. 

FIQIJRE 6. Instantaneous stream function Y at t = 98 when R/R, = 8 and AT = 200 K. 
The dashed line is the maximum-disturbance contour from figure 4. 
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Fzatnm 7. Averaged isotherms for (T - 1)/7 obtained over 6 time units when B/Ro = 8 
and A T  = 200 K. The dashed line is the maximum-disturbance contour from figure 3. 

Rayleigh-number level relative to the critical value and the magnitude of overheat. 
The latter generates a material-property effect associated with the strong decrease of 
water viscosity with increasing temperature. It should be noted that Gary & Kassoy 
(1981) have compared solutions generated with second- and fourth-order methods 
and resolutions up to a 49 x 49 grid to show that it is the order of accuracy which is 
the key to producing a useful description of oscillatory convection. While resolution 
is important it is apparent for the RIR, ratios considered here that a 33 x 33 grid 
will resolve the spatial structure. Computations on a 49 x 49 grid were, in our judge- 
ment, prohibitively expensive for the improvement obtained. 

The oscillating Nusselt number for RIB, = 8 and AT* = 200 K, obtained from a 
fourth-order calculation on a 33 x 33 grid, is shown in figure 2 for time units between 
94 and 98. A repeatable oscillation amplitude of about 0.2 units occurs with a period 
of about 1.5 for the interval shown and beyond. The amplitude is similar in size to that 
observed in extensive calculations for constant-viscosity convection when RIR, = 10, 
described in Gary & Kassoy (1981). However, the present period is considerably 
shorter than that observed earlier. The brtsic character of the oscillation can be ascer- 
tainedfromfigures3and4where wehaveshowncontoursofB,,-B,,,and Ymax-Ymin 
obtained at each grid point, over the five time units prior to 98, corresponding to more 
than three cycles. One observes that in both cases the oscillation is confined primarily 
to the upper left-hand corner. One may note the complete lack of variation in the 
lower right-hand corner where hot, low-viscosity liquid rises from the lower boundary 
(see figures 5-8). This behaviour is in distkct contrast to that observed for the constant- 
viscosity flow at R/Re = 10 described in Gary & Kamoy (1981). There, symmetry 
conditions required equal localized oscillations in the upper left- and lower right-hand 
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FIGURE 8. Averaged stream function obtained over 6 time units when R/Ro = 8 and 
AT = 200 K. The dashed line ie the maximum-disturbance contour from figure 4. 

corners. The core region was nearly steady in appearance. It appears that the variable 
viscosity effect on the oscillatory flow configuration is dramatic. Beginning in the 
lower right-hand corner of figures 3-8 we observe first the vertical rise of the relatively 
high speed convection plume of hot, low-viscosity liquid. The dominance of convective 
heat transport relative to conductive cooling leads to a relatively small vertical tem- 
perature gradient. The temperature difference (T- 1)/7 decreases by only 28 % over 
86 yo of the cell height. Thereafter the temperature gradients are more significant as 
the effect of the cold upper surface becomes pronounced. When the convecting fluid 
turns leftward, as portrayed in figures 6 and 7, a well-defined flow of hot liquid pene- 
trates the interior of the system below the cooled surface layer. This flow causes the 
mushroom-shaped isotherms distorted to the left in the upper half of figures 6 and 7. 
The horizontal gradient associated with the flow is minimal until we reach the location 
of the oscillatory maximum seen in figures 3 and 4 and reproduced in figures 6-8. It 
appears reasonable to surmise that in this vicinity a localized instability develops 
owing to the interaction between a cool, heavy, near-surface layer and the hot, light 
liquid just below. A comparison of figures 6 and 7 or figures 6 and 8 shows that there 
is upward penetration of the hot flow in the instability region for the instantaneous 
configuration relative to the average system. 

The downward convection plume of cooled surface-layer liquid moves more slowly 
than its hot counterpart. T h  relatively sluggish response is caused by a characteristic 
viscosity six times larger than that in the lower right-hand corner, for this system with 
AT* = 200 K and T,* = 298 K. Conductive effects are more pronounced, leading to 
larger vertical temperature gradients than in the hot plume, because the residence 
time is considerably larger. When the downflowing fluid turns to the right a cool 
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tongue of liquid penetrates the interior of the cell above a heated bottom boundary 
layer. It may be observed from figures 6 and 7 that the penetmtion is considerably less 
significant than that associated with the hot tongue. For example, in the former 
drawing we see that, halfway across the cell, the hot leftward-moving tongue has been 
cooled by about 30 yo. In  contrast the cold, rightward-moving liquid has been heated 
by more than 60 %. One may surmise that the instability is absent in the lower right- 
hand corner because the localized density contrast is much smaller than that in the 
upper left-hand corner. certainly, one may note from figure 6 that the change in 
temperature gradient across the dashed maximum-disturbance contour is significantly 
different from that seen in the analogous portion of the lower right-hand corner. 

6. Discussion 

Rayleigh number, defined by 

(32) 

where K* is the thermal diffusivity and v z  is the kinematic viscosity evaluated at the 
mean of the boundary temperatures, the Nusselt number N declined with an increase 
in the ratio of the viscosities of the top and bottom boundaries. Booker & Stengel 
(1978) were then able to show that all the data points were correlated fo within 1 yo by 

Booker's original data (1976) showed that at a fixed value of the viscous-liquid 

R -  - a * *  g A T * P S / ~ * v 2 ,  

N = 1.49(RV/Rvc)'"*' (10 < Rv/Rv, < 220). (33) 

The ratio of boundary viscosities was &s much as 300 in the high-Prandtl-number liquid 
used. It should also be noted that the convection modes observed by Booker (1976) 
in a cylindrical vessel were far more general than the two-dimensional rolls considered 
in the present porous-media problem. 

The results in figure 1 and table 1 may be used to construct a graph of N = N ( R ) .  
We find that at a given value of R the Nusselt number increases monotonically with 
AT*.  This is physically plausible in our system where the upper boundary temperature 
is fixed. An increase in AT* means an increase in the bottom-boundary temperature 
and a reduction in the viscosity in the lower portion of the system leading to enhanced 
convection. The result is opposite to that found by Booker (1976). There are several 
possible reasons for the difference. The modes of convection observed by Booker, as 
well as the container and working fluid, are rather different from those considered 
here. In general, our R/R, ratios are much smaller than those considered in the pure- 
fluid experiment. This may be relevant because Torrance & Turcotte (1971) found 
reduced heat transport with increasing viscosity ratio for computed two-dimensional 
rolls in a pure fluid with free horizontal boundaries. A more likely explanation can be 
developed by recognizing that if the bottom temperature of a system is fixed and the 
top temperature is lowered, then the viscosity ratio will increase but the system will 
become relatively more viscous and hence less convective in nature. Then the observed 
decline of the Nusselt number with increasing viscosity ratio is physically plausible in 
that case. If Booker's (1976) experiment was run by reducing the upper-boundary 
temperature relative to the lower value then his observation is understandable. 
Unfortunately there is no detailed description of procedure in the paper. 

The success of (33) in predicting the Nusselt number for an extensive range of 
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conditions motivated us to consider a similar correlation for the present problem. 
In order to follow the Booker-Stengel approach the porous-medium Rayleigh number, 
defined below (3), is rewritten as 

R = g*k*a*AT*L*/v,*~z, K E  = hg/pgCT, (34) 

where k*L* plays the role of L*3 in (32). If the system properties, g*, k*, a*, L*, K*, and 
the upper-boundary temperature T$ are specified, then v(: is known. It follows that 
the Rayleigh number can be written formally as R = QAT* where the known value 
of SZ can be found from (34). In  this sense 

R/Rc = AT*/AT,*, (35) 

where AT,* is the temperature difference just required for the onset of convection. It 
follows that figure 1 can be reinterpreted in terms of N as a function of AT/AT*. 
Similarly one can define a Rayleigh number based on the mean value of the kinematic 
viscosity: 

RA = g*k*a*AT*L*/vlKg = R(vi/v$)-l,] 
* 

v:: = #v$ (l+$),  

where v z  is the bottom-boundary value of v*. It follows that 

where the subscript c denotes the critical value. The inequality follows from vf Q vfc 
for AT* 2 0. If (4) and p* = p*v* are used one may find the explicit dependence of 
the viscosity term in (36) on AT* and R / R e .  

One may now construct N = N(RA) from figure 1, table 1 and (36). We find again 
that there is an increase in N with AT*, although the variation is considerably reduced 
when compared with that found from N = N(R).  

If the sought-after correlation formula is to exist then one should find a single value 
of N at a specified RA/RAe for a range of AT*. Referring to figure 1 we can observe 
that a constant value of N is found for increasing values of AT* as R/Re increases. 
Then in order for the correlation to work it is necessary that (RA/RAe) 5 RIR, at a 
given AT*. Unfortunately (36) shows the opposite to be true. The Booker-Stengel 
type of correlation does not appear to be valid in this system where increasing viscosity 
ratio is associated with a less-viscous, more-convective flow process. It is possible 
however that a more general development might produce a better result. For example 
the derivation of (37) requires that a* and K*, are both independent of AT*. Neither 
condition is physically viable for a water-saturated porous medium. 

Although theoretical considerations and the appearance of oscillatory convection 
limit our study to a range of values of R/Re far smaller than those considered by 
Booker & Stengel, it is apparent that the basic conclusions are similar although not 
identical. Whether in water-saturated porous media or in a pure viscous fluid, the 
Nusselt number is primarily dependent on the ratio R/Re.  The weak dependence on 
the bottom-to-top temperature (or viscosity) ratio, found in our numerical calculations, 
appears to decrease as R +- Re, and vanishes altogether in a first-order weakly nonlinear 
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theory. It is plausible, but by no means certain, that a weak temperature effect in the 
pure viscous fluid data is masked by experimental error. 

We observed the appearance of a verifiable oscillatory flow a t  R/Rc = 8 when 
AT* = 200 K, whererts steady flow occurs in the constant-viscosity case. This suggests 
once again that the physical properties of these rolls are not purely dependent on 
RIR,. The oscillatory pattern of the flow differs in a distinct manner from that observed 
in a constant-viscosity fluid. The most notable difference is associated with the localized 
instability zone in the region where the cooled surface layer turns downward. The 
physical origin of the onset of the oscillatory motion and modelling of the process 
deserve further attention. 
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